Bayesian reanalysis of a quantitative trait locus accounting for multiple environments by scaling in broilers.
نویسندگان
چکیده
A Bayesian method was developed to handle QTL analyses of multiple experimental data of outbred populations with heterogeneity of variance between sexes for all random effects. The method employed a scaled reduced animal model with random polygenic and QTL allelic effects. A parsimonious model specification was applied by choosing assumptions regarding the covariance structure to limit the number of parameters to estimate. Markov chain Monte Carlo algorithms were applied to obtain marginal posterior densities. Simulation demonstrated that joint analysis of multiple environments is more powerful than separate single trait analyses of each environment. Measurements on broiler BW obtained from 2 experiments concerning growth efficiency and carcass traits were used to illustrate the method. The population consisted of 10 full-sib families from a cross between 2 broiler lines. Microsatellite genotypes were determined on generations 1 and 2, and phenotypes were collected on groups of generation 3 animals. The model included a polygenic correlation, which had a posterior mean of 0.70 in the analyses. The reanalysis agreed on the presence of a QTL in marker bracket MCW0058-LEI0071 accounting for 34% of the genetic variation in males and 24% in females in the growth efficiency experiment. In the carcass experiment, this QTL accounted for 19% of the genetic variation in males and 6% in females.
منابع مشابه
Accuracy of Genomic Prediction under Different Genetic Architectures and Estimation Methods
The accuracy of genomic breeding value prediction was investigated in various levels of reference population size, trait heritability and the number of quantitative trait locus (QTL). Five Bayesian methods, including Bayesian Ridge regression, BayesA, BayesB, BayesC and Bayesian LASSO, were used to estimate the marker effects for each of 27 scenarios resulted from combining three levels for her...
متن کاملA comparative study of quantitative mapping methods for bias correction of ERA5 reanalysis precipitation data
This study evaluates the ability of different quantitative mapping (QM) methods as a bias correction technique for ERA5 reanalysis precipitation data. Climate type and geographical location can affect the performance of the bias correction method due to differences in precipitation characteristics. For this purpose, ERA5 reanalysis precipitation data for the years 1989-2019 for 10 selected syno...
متن کاملGenotype by Environment Interaction of Quantitative Traits: A Case Study in Barley
Genotype by environment interaction is a phenomenon that a better genotype in one environment may perform poorly in another environment. When the genotype refers to a quantitative trait locus (QTL), this phenomenon is called QTL by environment interaction, denoted by Q×E. Using a recently developed new Bayesian method and genome-wide marker information, we estimated and tested QTL main effects ...
متن کاملA statistical framework for expression quantitative trait loci mapping.
In 2001, Sen and Churchill reported a general Bayesian framework for quantitative trait loci (QTL) mapping in inbred line crosses. The framework is a powerful one, as many QTL mapping methods can be represented as special cases and many important considerations are accommodated. These considerations include accounting for covariates, nonstandard crosses, missing genotypes, genotyping errors, mu...
متن کاملNetwork-based multiple locus linkage analysis of expression traits
MOTIVATION We consider the problem of multiple locus linkage analysis for expression traits of genes in a pathway or a network. To capitalize on co-expression of functionally related genes, we propose a penalized regression method that maps multiple expression quantitative trait loci (eQTLs) for all related genes simultaneously while accounting for their shared functions as specified a priori b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of animal science
دوره 84 8 شماره
صفحات -
تاریخ انتشار 2006